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Foreword

The principle of least squares is applied in every field of science
and engineering, but least-squares algorithms often suffer from
convergence problems in complex applications. The present work
was motivated by the difficulty encountered in fitting a mathematical S
model to altimetric sea-surface height residuals. The presence of
mean dynamic topography in the reference surface used to calculate
the residuals leads to significant difficulty in interpretation. The
goal of the fitting of a mathematical representation is the estimation
and subsequent removal of the error. However, standard least- 0
squares procedures have difficulty unless the initial estimates of
model parameters are very good.

This report describes research performed at the Naval Oceano-
graphic and Atmospheric Research Laboratory on the application
of genetic algorithms to the task of fitting mathematical models to
data. Genetic algorithms are search techniques that are based upon S
the mechanics of natural selection. They have been used successfully
in a number of optimization problems, but this is apparently their
first application to curve fitting. The genetic algorithm approach
is easily implemented, is accurate, and provides consistent results.
It also has application to curve-fitting problems in general, not
just to the problem that motivated the research. Therefore, this
new approach to least-squares curve fitting has the potential to
make a valuable contribution in a number of scientific fields.
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Executive Summary Genetic algorithms are search techniques based on the mechanics of
natural selection. They have been used successfully in many applications
because of their robustness and because of their ability to search in a
noisy problem space. In particular, genetic algorithms are used in curve-
fitting. The genetic algorithm selects the coefficients of a particular
curve that most closely n,.atches a given set of data.

Candidate solutions are vectors of real numbers that represent the
coefficients of the curve to be modeled. Thus, every candidate solution
corresponds to a new function. As such, each candidate solution is
evaluated using the sum of the squares of the residuals. The evaluation
of each of these curves with respect to its fit of the data guides the
genetic algorithm toward the solution with the greatest merit.

Several examples of the application of genetic algorithms to curve-
fitting problems are presented. Convergence to the optimal solution is
rapid when knowledge of the coefficients is available. When little
is known about the coefficients, a degree of experimentation helps obtain
the optimal solution.
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Curve Fitting
Using Genetic Algorithms

I. Introduction Techniques to fit curves to data are plentiful. Linear least squares/
regression is one of the more commonly used methods. There are also
nonlinear techniques that work well when the data set is small and
when the function is relatively simple. However, many of these tech-
niques often fail when large data sets are used or when complicated
functions need to be modeled. Singular value decomposition, QR*
decomposition, Marquardt's algorithm, and steepest descent techniques
are sometimes used. This report describes an alternate method of curve
fitting that can be used for complex functions and for large data sets
and that employs genetic algorithms.

Genetic algorithms are search techniques based on the mechaniLs of
natural selection. Genetic algorithms are related to "generate-and-test"
search techniques. In pure "generate and test," a candidate solution is
generated and then sent to an evaluator for testing. If the candidate solution
is not optimal, then the procedure is repeated. In genetic algorithms,
the generate-and-test procedure is repeated iteratively over a large set of
candidate solutions. Because this set can be large, a significant number
of possible solutions can be tested simultaneously. Holland (1975) refers
to this as implicit parallelism. Genetic algorithms seem to be unique
among optimization techniques in employing implicit parallelism.

The terminology of genetic algorithms is taken from genetics. Each
candidate solution is called an organism. A chromosome is a list of
elements called genes. In the simplest case, an organism consists of a
single chromosome (haploid), although there are cases when the
organism consists of dual-strand chromosomes (diploid). Chromosomes
usually consist of linear lists of genes. A gene can assume any of a
number of values called alleles, which are taken from the base set, for
example, 10, 1). Generally, problem solutions are encoded as strings of
alleles (most commonly, strings of O's and l's).

Many organisms are grouped together into a set called a population.
The genetic algorithm evaluates a population and generates a new one
iteratively. Each successive population is called a generation. Thus we
have an initial population, G(O), and for each generation G(t), the genetic
algorithm generates a new one, G(t+ 1). An algorithm to implement a
genetic algorithm is given by

generate initial population, G(0);
evaluate G(0);
t:= 1;
repeat

generate Gkt) using G(t- 1);
evaluate G(t);
t:= t + 1;

until solution is found.

*A method developed by Francis (1961: 1962) for finding the real and complex eigenvalues of
an arbitrary matrix.



Like all generate-and-test methods, the genetic algorithm requires
the two main steps of generation and evaluation. To evaluate a popu-
lation, a fitness function is needed. In nature, a species responds in
some way to environmental pressure. The genetic algorithm analog to
this pressure is the fitness function. The fitness function is built from
domain-specific information and returns the relative merit, or fitness,
of the organism.

The operation of generating a new population distinguishes the genetic
algorithm from the other techniques. To obtain the next generation,
pairs of organisms are selected based on their fitness. The pairs are S
combined to form new organisms that are added to the next generation.
This procedure is the genetic algorithm analog to "survival of the fittest."
As with population genetics, the pair selected are called the parents.
Their mating produces new organisms called offspring. Goldberg (1989)
discusses genetic algorithms in detail.

Genetic algorithms also differ in other ways from traditional search
and optimization methods:

* Genetic algorithms search large numbers of candidate solutions
simultaneously.

" Genetic algorithms are probabilistic-they use random search and/
or selection rather than deterministic methods. 0

" The objective function used by genetic algorithms is based on actual,
problem-specific information, rather than auxiliary information, such
as derivatives.

As is the case in natural selection, organisms that are highly fit mate
and produce offspring. On the average their offspring are more favorably
adapted than offspring of less highly fit parents. Generally, the offspring 5
of the highly fit are themselves highly fit, some even more so than their
parents.

The genetic algorithm is based on the same principle as natural selection.
The first operator used by genetic algorithms is called selection. Like
its natural selection counterpart, the selection operation selects pairs
of highly fit organisms for mating. This focus toward the highly fit
inc(ividuals is what drives genetic algorithms.

The genetic algorithm analogy to mating is called crossover. The
crossover operator provides a mixing of the genes from the parents, and
globally it mixes the genetic material of the whole population. It is the
mixing of the genes, the stirring of the pot of genetic material, that S
gives robustness to the genetic algorithm. The two organisms chosen by
sclection are combined to form a new individual with similarities to
both parents. If the mixing is done carefully, then a large amount of
genctic material can be tested. Although selection focuses on the genetic
alkorithm, it is crossover that adds variety.

The simplest version of crossover consists of randomly selecting a
single crossover point and then combining the left side of one parent
chromosome, up to the crossover point, to the right side of the other
parcnt chromosome (Fig. ). In addition to the single-point crossover,
thcre are quite a few variations of the crossover operator. Each is designed
to produce a new offspring from the parents in such a way that the
offspring produced will further sample the solution space of organisms.

While selection and crossover are the chief operators used in genetic
algorithms, there are numerous other minor operators proposed to

2i Curve Fitting Using Genetic Algorithms



CHROM 1 00000000

Figure 1. Crossover of two binary-alleled X D OFFSPRING 1 11

chromosomes after the fifth gene was
selected at random as the crossover CHROM 2 [1 1 1 1 1 1 1: 1

points.

strengthen genetic algorithms under certain circumstances. For certain
applications, these minor operators can add to the genetic algorithm's
efficiency or prevent it from converging to a local optimum rather than
a global optimum. For example, it sometimes happens that the genetic
algorithm converges to a solution prematurely because crossover only
mixes the genetic material that is present in the initial population; it
does not introduce new material. In nature, new genes are introduced
into a species through mutation. Analogously in genetic algorithms, a
mutation, operator is used occasionally to modify a chromosome to add
new genes into the population and to prevent premature convergence.

De Jong (1975) observed the need to scale the fitness function values
of the organisms, since, as the genetic algorithm nears a maximum
value, most of the organisms will have fitness values that lie within a
very small range. Organisms whose fitness values are near the bottom
of this narrow range still have a fairly large probability of being selected
for mating. By scaling these low values to near 0, the probability of the
less fit being selected is markedly decreased. Scaling has become a
widely accepted practice. If an organism has a high fitness value, there
is a good probability that it will be selected for mating, thus contributing
its genetic material intc later generations. However, by chance, it may
not be selected, which could delay the genetic algorithm for several
generations in finding this individual again. To overcome this problem,
an elitist strategy could be used. This strategy allows a few of the fittest
organisms to be placed unchanged into the next generation.

II. Representation The organisms in a genetic algorithm represent solutions to the problem.
In this case, solutions are real values assigned to each coefficient in the
curve model. There is also a measurement of the goodness of fit with
respect to the data 0. Thus, iff=f(a 1 , a2, . . . a,; x) is the curve to
be fit, then real number values for the coefficients a,, a2, . . . , an are
searched for. Thus, vectors <r1 , r2, . . ., rn>, where ai is replaced by
real numbers ri, i = 1, 2, . . ., n, are candidate solutions. Therefore,
organisms for the genetic algorithm used in curve fitting are vectors of
real numbers, <r1 , r2 , . . . r,>.

This view of the representation is useful at the higher level of the
curve-fitting problem. However, the genetic algorithm works at a lower
level-the level of bits or alleles. To successfully use the genetic algorithm
consider a representation of the real numbers ri at the allele level.
Given upper and lower bounds for each ri, ui and li, respectively, we
can look at r, as an unsigned binary integer with m bits and calculate
its value with respect to li and ui.

Curie Fitting Using Genetic Algorithms 3



Given a binary integer b, where b is in [0, 2
k - 1], its corresponding

real value is given by the formula

r = b/2' * (u - i) + 1, (1) 0

where u and I are the upper and lower bounds, respectively. Combining
these two levels, a candidate solution is constructed:

0 = <bit b12 b3 . ..b ,,,, b2l b22 . ..b2, -.. . bill b,.2 . . .b.,>,

where each binary integer bit b,2 •. b. ,, corresponds to a real number
ri which lies in the interval [li, ui]. The correspondence is given in
equation 1.

Computing the value of the fitness function on a candidate solution
0 requires the two steps: converting each binary integer bil b, . . . b0
into its corresponding real value r. and then evaluating the curve
f=f(r1, r2,. . ., r.; x) at the data points of D.

The fitness function is a measurement of how well the candidate M. Fitness Function
solution fits the data. It is the entity that focuses the genetic algorithm 0
toward the solution. The fitness used in this problem is built in several
stages,

* The candidate solution 0 is converted into a vector of real numbers
r = <r 1, r2, . . ., r,> and the value of f(r; x) =f(r t , r2, ... r,.; x)
is calculated for each xi where the pair (xi, yi) is in !D.

* The sum of the squares of the differences between the f(r; xi) and
y, (that is, the residuals) yields a measurement where 0 indicates an
exact fit. This value is called the prefitness value of 0. Thus,

prefitness (0) = [. (f(r; xi) -yi) 2) , (2)

where the summation is taken over all data points (xi, y8) of D.
• Since genetic algorithms work by searching for maximum values

and since the prefitness function has its minimum for the best fit, max and
min must be reversed. For each population p, let maxp represent the largest
prefitness value (that is, the worst fit). (Also let avg. be the average of
the fitnesses of p.) Compute the raw fitness as the difference

raw fitness (0) = max, - prefitness (8). (3)

This computation is not precisely the fitness function used in the
genetic algorithm. Most genetic algorithms require a scaling of these 0
fircss values. Scaling amplifies the distinction between good and very
good organisms. In the simplest case, linear scaling was used:

fitness (0) = ra* raw fitness (0) + bP, (4)

where rp and b. are constants calculated for each population p.
Equations 3 and 4 can be combined to form a linear relationship between
the fitness and the prefitness functions:
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fitness (0) = a,* prefitness (0) + o 2 , (5)

where a, and a2 are derived constants for each population. Thus, the final
fitness of an organism 0 is linearly related to the sum of the squares of
the residuals.

IV. Genetic Operators The method used here is stochastic sampling without replacement,
A. Selection called "expected value" by Goldberg (1989). To implement this method,

given an organism 0 with fitness f , the fitness is weighted with respect
to the population's average f*. The truncated division of f, by f* yields
the expected number of offspring formed by 0. The expected number of
offspring of each organism in the population is calculated. Should any
slots in the new population be unfilled after this process is completed,
the fractional parts of each fitness, truncated by the previous division,
are used to determine remaining positions (De Jong, 1975).

In addition to this selection method, De Jong's elitist strategy
(De Jong, 1975) was used, whereby the single best organism from one
generation is placed unchanged into the next generation. This strategy
gives a little more weight to the best organism than might be achieved
from selection alone and prevents the possibility that the best organism
might be lost early through crossover or mutation.

B. Crossover Simple crossover was used and it worked effectively. For problems
with many coefficients or where many bits are needed for greater pre-
cision, two-point crossover yielded better results than single-point
crossover. Ninety percent of the selected pairings were crossed, and the
remaining 10% were added unchanged to the next generation. This. is
referred to as a 90% crossover rate.

C. Mutation The mutation method most commonly used is to change the value of
a bit at a gene position with a frequency equal to the mutation rate.
Numerous mutation rates were tested, but good results were found
infrequently while using the bit-change method. High mutation rates
have the effect of introducing a large amount of new material into the
population. Thus, good solutions were frequently found. However, a
high mutation rate also has the effect of frequently changing organisms,
including those that have a good fitness. So while high rates often find
good solutions, they tend to be disruptive to the population as a whole.
There were other times that, even with a high rate, the genetic algorithm
failed to find an acceptable solution. With low mutation rates, the genetic
algorithm also often failed.

A problem with this mutation method is related to the so-called
"Hamming cliffs" (Carruana and Schaffer, 1988). Suppose an optimal
coefficient has value of 0.5 and is represented as 100000 using 6-bit
binary integers and a boundary interval of [0, 1]. A candidate solution
of 011111 (= 0.46875) might yield fairly good results because of its
nearness to the optimum. However, once the genetic algorithm has begun
converging to this suboptimal value, it is very unlikely for it to move
away from this near-optimal solution toward a better solution. Only
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cha, ing a single bit or two would never enable a population of such
organisms to move to the optimal solution.

Instead of the bit-change mutation, a method that adds a real value
c to (or subtracts it from) the organism's converted value was 0
introduced. The value E is a power of 2 ranging from 1 to 2'".
If Ei =0.. . 0 1 0. . .0 with I in the ith position and O's elsewhere,

then this mutation method adds £ to (or subtracts F from) the organism
to be mutated, where e is in (Cl, E2, ..... ,r). We will refer to this
method of mutation as ±.

The method proceeds as follows: If randomness has determined that
the allele in the relative position i (the ith gene of some coefficient in
0) is to be mutated, then Ci is either added to or subtracted from 9. If
the ith gene is 0, then adding £i is identical to a bit change. Or if the ith
gene is 1, then subtracting ei is just the bit-change mutation. The
improvement in this method over bit-change mutation occurs when C is 0
added to a gene with value of I (or subtracted from a gene with a value
of 0). Given the example referred to, adding 1 to the sixth gene in
0 11111 yields the optimal value of 100000.

These two mutation methods are compared in Table 1. The results
are from two runs; one run uses a genetic algorithm with bit-change
mutation, and the other uses the same genetic algorithm parameters, but
with ± mutation. The runs were chosen because their initial populations
had similar best organisms. The values listed are the errors in the fit of
each curve. The error used here is the square root of the prefitness
value of the organism. That is, error (0) = SQRT(X (f(r; xi) -yi) 2 ),
where 6 = <r> and (xi, yi) range over D. Results were taken from 0
Problem I (Section V) for illustration purposes here. In this case, the
ideal organism was predetermined to have error of 0.411911.

As can be seen, both methods allow convergence toward the optimum
value. However, the bit-change mutation method often does not approach
the optimum as rapidly because of the Hamming cliffs.

The ±c mutation allows faster convergence than bit-change mutation
in seveal runs with otherwise identical genetic algorithm parameters.
Therefore. not only does ±E provide better accuracy, it reaches its answer
faster. Since the ideal organism has an error of 0.411911, a value of
0.42 was chosen as the threshold for measuring convergence (Table 2).
Note that convergence in Problem I was measured by comparing the
error to the threshold. Only in this case was the ideal organism known
in advance. This luxury was not present in the other problems.

Table 1. Comparison of errors of best Table 2. Generation in which best
organisms from each generation, organism had an error less than

Bit Change vs. Mutation Techniques 0.42.

Convergence Comparison
Generation Rit Change IE of Bit Change and ±c Mutation

0 2 097375 2074479 Run Bit Change ±c
10 0.663834 0412049 1 18 6
20 0530236 20412039

30 0427454 0411977 3 44 s

40 0421900 0411972

50 0418273 0411947 'Did not reach the 0.42 threshold
in 50 generations.

Curve Fitting Using Genetic Algorithms



For the simpler problems, the ±E mutation method was used. However,
decaying mutation worked better for more complex problems. Decaying
mutation proceeds as follows:

Let E = (eI, 2, . . . , E,) be as described above. Initially, E is chosen
at random from !E After some specified number of generations (for
example, 10 or 20), choose E from E- {e). Later, choose £ from
E- {E, E2)..... In this manner, the change affected by ± is declining
over time. The frequency of change remains fixed, but the degree of
change is gradually reduced. This method improved convergence,
especially when looking at the average of the population rather than the
best organism.

The solution for Problem 1 uses the original fixed ±E, while other
solutions use the decaying version. However, when convergence is rapid,
as it is with Problem 1, the two methods are essentially identical. Hence,
references to ±E will be that of the decaying version.

There are several approaches to genetic algorithm convergence. One
approach examines the best organism in the population; another uses
the average of the population. Holland (1975) refers to two other
approaches, where the best of all the generations are averaged (offline)
or the average of all the generations are averaged (online). If p, is the
population of generation t, then

offline (Pt) =11t I max p, (6)

and

online (p,) = lit 2" avgp,,, (7)

where the summation is taken over all generations n = 1, 2, .... t.
Since the goal is to find the best fit for a curve, attention is generally
restricted to the best of the generations so far. However, the errors of
the best and the average of several generations are compared (Figs. 2
and 3).

A sustained error at a certain value could indicate convergence.
Convergence is faster using the best of each generation, since it may
take several generations for the average of a population (hence, almost
all the members) to be near the optimal value. Convergence is more
uniform using the average of the generations. If the best of the genera-
tions is used, then a suboptimal organism may stand out for several
generations before a better organism is found. If the population is thought
to have converged at this suboptimal value, then the genetic algorithm
may be stopped prematurely before the optimal organism has a chance
to emerge. Table 3 for a comparison of these concepts.

V. Experimental Results Population size was kept at 100 for all except the most complex
functions. For these, convergence was too slow and a larger population
of 200 improved performance considerably.

The mutation rate adopted was 1% for the examples below. Scaling
was crucial, since so many prefitness values were near each other.
The fitness of an organism is the new value after scaling is applied

Curve Fitting Using Genetic Algorithms
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Table 3. Generation at which the threshold Is
maintained.

Comparison of Using 'Best of Generation"
and 'Average of Generation" for Convergence

Run Best Avg. Best Avg.

1 6 40 19 74

2 40 54 78 91

3 5 43 28 77

Threshold: 0.42 Threshold: 0.412

to the raw fitness value. See equation 4. For the problems in this analysis,
scaling proceeded as follows: After the raw fitness of each organism in
a population p was calculated, the average raw fitness avg. was computed. 0
For any organism with a value equal to avg,, scaling made no change.
Likewise, for organisms whose raw fitnesses were less than avg,, no
change was made. The organism with the largest raw fitness maxp was
scaled to avgp* scale-factor, where scalejactor is a predetermined
parameter. Organisms with values intermediate between avg, and max,
are scaled proportionately. Thus,

r rawfitness (0), if raw_fitness (0) <avgp
fitness (0) lmp* rawfitness (0) + b,, otherwise, (8)

where mp and b. are from equation 4. To achieve the accuracy desired,
very large scale factors were needed. They ranged from 1,000 to 100,000.
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Figure 4. Linear function which best fits
the data set from Problem 1. 0 1 2 3 4 5 6

Table 4. Generation at which the threshold is maintained.

Convergence Comparisons Based on the Width of the
Domain Intervals

Best of Each Generation

Run Interval Width Interval Width

2 16 2 16

1 3 19 1 6
2 37 76 3 40

3 10 26 6 5
Average 17 40 3 17

Threshold - 0.412 Threshold - 0.42

The first example is designed to illustrate only the concepts. Should
a problem of this simple genre be encountered, other more traditional
strategies, such as least squares regression, might be employed to solve
it. However, the model described here works well.

Problem 1. Given the data D = ((1.0, 0.0), (2.01, 2.15), (3.08, 4.14),
(4.22, 6.08), (5.0, 8.17)) find the linear function f= Ax + B that fits D
most closely (Fig. 4).

The genetic algorithm used in curve fitting requires bouns for the
coefficients. If the length of the boundary interval is sm dil, then
convergence is generally rapid. For larger intervals, convergence proceeds
more slowly. In this problem, the answers were known in advance:
-A = 2.0 and 8 = -2.0. By choosing intervals [1,3) and [-3,-1] for A
and B, respectively, very rapid convergence is obtained. For the wider
interval [-8, 8], convergence is somewhat slower (Table 4).

Assume that A and B lie within the boundary interval [-8,8]. The
number of bits assigned to the representation is a function of the interval
width and the degree of precision needed. The representation of
the solution was somewhat arbitrarily chosen as 24 bit integers. This
number gave the accuracy to the fifth decimal position. For
example, 1010100 . . . 0 would represent 2.5 (calculated from
0.65625*16-8) and -5.75 would be represented as 00100100. . . 0
(as 0.140625*16 - 8).

Since the curve to be fitted is linear, the results can be compared to
the solution using linear regression (Table 5).

Curve Fitting Using Genetic Algorithms 9
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Table 5. Comparison of several genetic algorithm methods to linear
regression.

Comparison of Several Curve Fitting Methods
Best of the 50th Generation

Method A B Error

Regression/Least Square 1.97852 -1.95024 0.411911

Genetic Algorithm/Small Intervals 1.97849 -1.95012 0.411948
Genetic Algorithm/Large Intervals 197860 -1.95047 0.411945
Genetic Algorithm/Large Intervals' 1.97853 -1.95028 0.41194 •

'100 generations

Table 6. Results of three runs of genetic algorithm on
the cubic equation f,, Ax 3 + Bx2 + Cx+ D and the data
from Figure 5.

Coefficients Found by Genetic Algorithm Using ::e Mutation

Best of Each Generation

Coefficient Run I Run 2 Run 3

A 0.499999 0.500000 0.500000
8 0.249999 0.250000 0.250000 0
C 0.250008 0.250000 0.249999
D 0.749999 0.749999 0.750000
Error 2.14 E-5 5.05 E-6 5.05 E-6

Even though the results in Table 5 are the best of several runs, the
worst results are not far off either. When allowed to run to 100 genera-
tions, all three runs returned the same error: 0.411944.

Problem 2. The seven data points pictured in Figure 5 lie roughly on
a cubic, f= Ax3 + Bx 2 + Cx + D. Find the coefficients that yield the
best fit.

The solution to this problem is approached by using the same parameters 0
and strategies as those of Problem 1, except simple crossover with
2 points and decaying ±E mutation is employed.

The coefficients and the resulting error were found by three runs of
300 generations each. The genetic algorithms converged quite rapidly
to reasonably good answers; however, the area of interest was in a
greater degree of accuracy than they achieved at first (Table 6).
It may appear that 300 generations is too many. However, if the

precision needed, is relaxed, then good results are obtained sooner.

10 Curve Fitting Using Genetic Algorithms



Table 7. Genetic algorithm runs with bit change mutation.

Coefficients Found by Genetic Algorithm
Using Bit Change Mutation

Best of Each Generation

Coefficient Run I Run 2 Run 3

A 0.500001 0.499999 0.499999
B 0.249999 0.250000 0.250000
C 0.249994 0.250008 0.250004
D 0.750004 0.750000 0.749996
Error 1.73 E-5 1.49 E-5 2.30 E-5

Using an error threshold of 0.001, the best of the generations were
within the threshold as early as generation 115 but no later than the
generation 181. The average of the population yielded similar values in
the generation 300. For these cases, with the weakened threshold, the
values of the coefficients were accurate to about three decimal places
with an average error in the range of l0- 5.

For comparison, Table 7 is a list of the coefficients of three runs
where traditional bit change mutation is used. Here, the results are
nearly as good, and these results were achieved almost as quickly as
with ±e. Organisms whose values were within the 0.001 threshold were
found as early as generation 120, but no later than generation 209. Even
after 300 generations, however, the average of the population had not
converged. In this case, the average coefficient was accurate to only
two decimal places.

After several runs of the genetic algorithm on Problem 2, it became
clear that the curve being searched would fit the data exactly or nearly
so, since the errors were near 0. Because the fitness values of the
organisms were near 0, a variation of the fitness function was tried that
might give better results. After calculating the prefitness function as
before, that value was raised to a small power p (0 < p < 1). The idea
was that organisms near each other in fitness and also with a near-0
prefitness could be separated by this maneuver but not far enough to
make their differences too extreme. This separation effectively distanced
the good organisms from the very good ones (just as scaling does), but
did not place the good organisms too far from the very good ones
and cause them to be eliminated from further selection (as scaling
sometimes does).

Results comparable to those in Table 6 were achieved, and these
values were arrived at sooner than anticipated. These results were reached
in less than 200 generations using p = 0. 1, compared to 300 generations
without p.

Problem 3. This problem is designed to test the genetic algorithm's
ability to fit data to a nonpolynomial. Fit 10 points to the curve
f= A + B tanh(C (x - D)), where tanh is the hyperbolic tangent. (This
function was chosen because it approximates a cross section of the sea
surface topographic expression of a front.) The set of data points and the
curve whose coefficients are being searched for are given in Figure 6.

Using information that can be gained from knowledge of the data,
the conclusions were that A was between -0.05 and 0.0, B was between

Curve Fitting Using Genetic Algorithms 11
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Table 8. Genetic algorithm runs for nonpolynomial data.

Coefficients Found by Genetic Algorithm
Using Narrow Intervals

Best of Each Generation

Coefficient Run I Run 2 Run 3

A -0.025789 -0.025789 -0.025789
B -0.162363 -0.162363 0.162363
C -0.184057 -0.184053 0.184053
D 58.8945 58.8944 58.8945 0
Error 0.002728 0.002728 0.002728

0 and 0.2, C was between 0 and 1, and D was between 55 and 60. Begin
with intervals for A, B, and C of [-1,1]. Broaden the range somewhat
to allow for errors. Values of [55,60] were used for !D. The results from
the genetic algorithm are given in Table 8. Note that the values for the
coefficients B and C in run 3 are the opposite sign of those in runs 1
and 2. This opposition can be explained by using the property of hyperbolic
tangents: -tanh(x) = tanh(-x).

When small intervals are used for the domain of each coefficient,
convergence is faster and more accurate. The ranges of the coefficients can •
be derived from the function itself, from knowledge about the problem
from which the function arose, and from experimentation. All three
techniques were used in choosing the intervals for the functions found
here. Because of the size, the interval was much larger (100), and the
genetic algorithm described above was adjusted by increasing the length
of a chromosome to maintain the same level of accuracy. The genetic
algorithm was also allowed to run for additional generations (500) to
allow it more time to converge. The results were comparable (Table 9).

Problem 4. The nine data points displayed in Figure 7 lie on the
curve, f= Ax 4 + Bx 3 + Cx 2 + Dx + E.

As expected, when the boundary interval was large the degree of 0
accuracy was much less than when it was small. An alternate approach
to Problem 4 exploited this situation. Initially, large boundaries were
chosen for the coefficients. Once convergence was achieved, the genetic
algorithm was redone with smaller intervals attained from the earlier
runs. For instance, [-10, 10] was initially chosen as the boundary inter-
val for the coefficient A. After several runs, it became clear that A was
in the interval [0.20, 0.30]. By repeating the genetic algorithm with
these smaller intervals, a good degree of accuracy was obtained. The

12 Curve Fining Using Genetic Algorithms
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Table 9. Runs for Problem 3 with wider intervals and more
generations.

Coefficients Found by Genetic Algorithm
Using Wider Interval

Best of Each Generation

Coefficient Run 1 Run 2 Run 3

A -0.025792 -0.025793 -0.025785
B -0.162351 -0.162359 0.162362
C -0.184088 -0.184062 0.184058
D 58.8448 58.8942 58.8946
Error 0.002728 0.002728 0.002728

Table 10. Genetic algorithm runs for Problem 4. Earlier
experiments allowed determination of narruw boundary
intervals.

Quartic Polynomial Coefficient Result

Best of Each Generation

Coefficient Run 1 Run 2 Run 3

A 0.257026 0.257026 0.257033
B -0.047801 -0.047803 -0.047792
C -1.50491 -1.50492 -1.50500
D 1.04891 1.04891 1.04833

E 0.185663 0.185687 0.185813
Error 0.967972 0.967972 0.967972

results of this experiment are listed in Table 10. Similar results could
probably have been achieved by allowing the original genetic algorithm
to run longer and by using longer chromosomes. Further experimenta-
tion will determine which approach yields better results.

Problem S. This last problem is the one that motivated this work.
Without developing the source of the problem (Lybanon et al., 1990),
take the function f= A tanh(B (x - D - E)) - F tanh(C (x - E)) + G
along with 100 data points in D. The methods described above were
employed to find the seven coefficients that support the best fit. As
with Problem 4, the desired accuracy could not be achieved using large
intervals--those whose approximate length was 100. However, the range
of possible solutions was reduced considerably. As the genetic algorithm

Curve Fitting Using Genetic Algorithms 13



was repeated with the same parameters, but with the much smaller
intervals, the optimal values that were sufficiently accurate could be
focused on.

Genetic algorithms form a basis for another method of curve fitting. VI. Conclusions/Summary
Once the genetic algorithm testbed is built, only minor modifications in
the parameters and strategies are needed to achieve a fair degree of
accuracy. When some knowledge of the coefficients is available, the
genetic algorithm can quickly and accurately determine the optimal fit.
When there is little knowledge, some experimentation with the genetic
algorithm may be necessary to achieve a high degree of accuracy. In
any case, genetic algorithms were used successfully to fit curves to
data.
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